7-1. Determine (approximately) the force in each member of the truss. Assume the diagonals can support either a tensile or a compressive force.

Support Reactions. Referring to Fig. a,
$\varsigma+\sum M_{A}=0 ; \quad C_{y}(6)-40(3)-20(6)=0 \quad C_{y}=40 \mathrm{kN}$
$\varsigma+\sum M_{C}=0 ; \quad 40(3)+50(6)-A_{y}(6)=0 \quad A_{y}=70 \mathrm{kN}$

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}=0
$$

Method of Sections. It is required that $F_{B F}=F_{A E}=F_{1}$. Referring to Fig. b,
$+\uparrow \sum F_{y}=0 ; \quad 70-50-2 F_{1} \sin 45^{\circ}=0 \quad F_{1}=14.14 \mathrm{kN}$
Therefore,

$$
F_{B F}=14.1 \mathrm{kN}(\mathrm{~T}) \quad F_{A E}=14.1 \mathrm{kN}(\mathrm{C})
$$

$\varsigma+\sum M_{A}=0 ; \quad F_{E F}(3)-14.14 \cos 45^{\circ}(3)=0 \quad F_{E F}=10.0 \mathrm{kN}(\mathrm{C})$
$\zeta+\sum M_{F}=0 ; \quad F_{A B}(3)-14.14 \cos 45^{\circ}(3)=0 \quad F_{A B}=10.0 \mathrm{kN}(\mathrm{T})$

Also, $F_{B D}=F_{C E}=F_{2}$. Referring to Fig. c,
$+\uparrow \sum F_{y}=0 ; \quad 40-20-2 F_{2} \sin 45^{\circ}=0 \quad F_{2}=14.14 \mathrm{kN}$

Therefore,

$$
F_{B D}=14.1 \mathrm{kN}(\mathrm{~T}) \quad F_{C E}=14.1 \mathrm{kN}(\mathrm{C})
$$

$\varsigma+\sum M_{C}=0 ; \quad 14.14 \cos 45^{\circ}(3)-F_{D E}(3)=0 \quad F_{D E}=10.0 \mathrm{kN}(\mathrm{C})$
$\varsigma+\sum M_{D}=0 ; \quad 14.14 \cos 45^{\circ}(3)-F_{B C}(3)=0 \quad F_{B C}=10.0 \mathrm{kN}(\mathrm{T})$

Method of Joints.

Joint A: Referring to Fig. d,
$+\uparrow \sum F_{y}=0 ; \quad 70-14.14 \sin 45^{\circ}-F_{A F}=0 \quad F_{A F}=60.0 \mathrm{kN}(\mathrm{C})$

Joint B: Referring to Fig. e,
$+\uparrow \sum F_{y}=0 ; 14.14 \sin 45^{\circ}+14.14 \sin 45^{\circ}-F_{B E}=0 \quad F_{B E}=20.0 \mathrm{kN}(\mathrm{C})$
C) Ans.

Ans.
Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Joint C :

$+\uparrow \sum F_{y}=0 ; \quad 40-14.14 \sin 45^{\circ}-F_{C D}=0 \quad F_{C D}=30.0 \mathrm{kN}(\mathrm{C})$
Ans.

7-1. Contiuned

(d)

(e)

(f)

7-2. Solve Prob. 7-1 assuming that the diagonals cannot support a compressive force.

Support Reactions. Referring to Fig. a,

$$
\begin{aligned}
& \zeta+\sum M_{A}=0 ; \quad C_{y}(6)-40(3)-20(6)=0 \\
& C+\sum M_{C}=0 ; \quad 40(3)+50(6)-A_{y}(6)=0 \quad A_{y}=70 \mathrm{kN} \\
& \\
& \quad+\sum F_{x}=0 ; \quad A_{x}=0
\end{aligned}
$$

Method of Sections. It is required that

$$
F_{A E}=F_{C E}=0
$$

Ans.

7-2. Continued

Referring to Fig. b,
$+\uparrow \sum F_{y}=0 ; 70-50-F_{B F} \sin 45^{\circ}=0 \quad F_{B F}=28.28 \mathrm{kN}(\mathrm{T})=28.3 \mathrm{kN}(\mathrm{T})$
$\varsigma+\sum M_{A}=0 ; \quad F_{E F}(3)-28.28 \cos 45^{\circ}(3)=0 \quad F_{E F}=20.0 \mathrm{kN}(\mathrm{C})$
$\zeta+\sum M_{F}=0 \quad F_{A B}(3)=0 \quad F_{A B}=0$

Referring to Fig. c,
$+\uparrow \sum F_{y}=0 ; 40-20-F_{B D} \sin 45^{\circ}=0 F_{B D}=28.28 \mathrm{kN}(\mathrm{T})=28.3 \mathrm{kN}(\mathrm{T})$
$\varsigma+\sum M_{C}=0 ; \quad 28.28 \cos 45^{\circ}(3)-F_{D E}(3)=0 \quad F_{D E}=20.0 \mathrm{kN}(\mathrm{C})$
$\varsigma+\sum M_{D}=0 ; \quad-F_{B C}(3)=0 \quad F_{B C}=0$

Method of Joints.

Joint A: Referring to Fig. d,

$$
+\uparrow \sum F_{y}=0 ; \quad 70-F_{A F}=0 \quad F_{A F}=70.0 \mathrm{kN}(\mathrm{C})
$$

Joint B: Referring to Fig. e,

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad 28.28 \sin 45^{\circ}+28.28 \sin 45^{\circ}-F_{B E}=0 \\
F_{B E}=40.0 \mathrm{kN}(\mathrm{C})
\end{gathered}
$$

Joint \boldsymbol{C} : Referring to Fig. f,
$+\uparrow \sum F_{y}=0 ; \quad 40-F_{C D}=0 \quad F_{C D}=40.0 \mathrm{kN}(\mathrm{C})$

(e)

(f)

7-3. Determine (approximately) the force in each member of the truss. Assume the diagonals can support either a tensile or a compressive force.

$V_{\text {Panel }}=8.33 \mathrm{k}$

Assume $V_{\text {Panel }}$ is carried equally by $F_{H B}$ and $F_{A G}$, so

$$
\begin{aligned}
& F_{H B}=\frac{\frac{8.33}{2}}{\cos 45^{\circ}}=5.89 \mathrm{k}(\mathrm{~T}) \\
& F_{A G}=\frac{\frac{8.33}{2}}{\cos 45^{\circ}}=5.89 \mathrm{k}(\mathrm{C})
\end{aligned}
$$

Ans.

Ans.

Joint A:
$\xrightarrow{+} \sum F_{x}=0 ; \quad F_{A B}-5-5.89 \cos 45^{\circ}=0 ; \quad F_{A B}=9.17 \mathrm{k}(\mathrm{T})$
Ans.

$+\uparrow \sum F_{y}=0 ; \quad-F_{A H}+18.33-5.89 \sin 45^{\circ}=0 ; \quad F_{A H}=14.16 \mathrm{k}(\mathrm{C})$

Ans.

Ans.

$V_{\text {Panel }}=1.667 \mathrm{k}$
$F_{G C}=\frac{\frac{1.667}{2}}{\cos 45^{\circ}}=1.18 \mathrm{k}(\mathrm{C})$
$F_{B F}=\frac{\frac{1.667}{2}}{\cos 45^{\circ}}=1.18 \mathrm{k}(\mathrm{T})$

Joint \boldsymbol{G} :

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad 4.17+5.89 \cos 45^{\circ}-1.18 \cos 45^{\circ}-F_{G F}=0
$$

$$
F_{G F}=7.5 \mathrm{k}(\mathrm{C})
$$

$$
+\uparrow \sum F_{y}=0 ; \quad-10+F_{G B}+5.89 \sin 45^{\circ}+1.18 \sin 45^{\circ}=0
$$

$$
F_{G B}=5.0 \mathrm{k}(\mathrm{C})
$$

Ans.

Ans.

7-3. Continued

Joint B:

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{B C}+1.18 \cos 45^{\circ}-9.17-5.89 \cos 45^{\circ}=0
$$

$$
F_{B C}=12.5 \mathrm{k}(\mathrm{~T})
$$

$$
V_{\text {Panel }}=21.667-10=11.667 \mathrm{k}
$$

$$
F_{E C}=\frac{\frac{11.667}{2}}{\cos 45^{\circ}}=8.25 \mathrm{k}(\mathrm{~T})
$$

$$
F_{D F}=\frac{\frac{11.567}{2}}{\cos 45^{\circ}}=8.25 \mathrm{k}(\mathrm{C})
$$

Joint \boldsymbol{D} :

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{C D}=8.25 \cos 45^{\circ}=5.83 \mathrm{k}(\mathrm{~T})
$$

$$
+\uparrow \sum F_{y}=0 ; \quad 21.667-8.25 \sin 45^{\circ}-F_{E D}=0
$$

$$
F_{E D}=15.83 \mathrm{k}(\mathrm{C})
$$

Joint E :

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad 5+F_{F E}-8.25 \cos 45^{\circ}=0
$$

$$
F_{F E}=0.833 \mathrm{k}(\mathrm{C})
$$

Joint C :

$+\uparrow \sum F_{y}=0 ; \quad-F_{F C}+8.25 \sin 45^{\circ}-1.18 \sin 45^{\circ}=0$
$F_{F C}=5.0 \mathrm{k}(\mathrm{C})$

Ans.
Ans.

Ans.

Ans.
Ans.

Ans.
ns. $\left.\quad F_{C D} \xlongequal{8.25 x}\right|_{21.667} ^{F_{E D}}$ (D)

Ans.
*7-4. Solve Prob. 7-3 assuming that the diagonals cannot support a compressive force.
$V_{\text {Panel }}=8.33 \mathrm{k}$

Ans.
Ans.

Joint \boldsymbol{A} :

$\xrightarrow{+} \sum F_{x}=0 ; \quad F_{A B}=5 \mathrm{k}(\mathrm{T})$

7-4. Continued

$+\uparrow \sum F_{y}=0 ; \quad F_{A N}=18.3 \mathrm{k}(\mathrm{C})$

Joint \boldsymbol{H} :

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad 11.785 \cos 45^{\circ}-F_{H G}=0
$$

$F_{H G}=8.33 \mathrm{k}(\mathrm{C})$
$V_{\text {Panel }}=1.667 \mathrm{k}$

$$
\begin{aligned}
& F_{G C}=0 \\
& F_{B F}=\frac{1.667}{\sin 45^{\circ}}=2.36 \mathrm{k}(\mathrm{~T})
\end{aligned}
$$

Joint B :

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; \quad F_{B C}+2.36 \cos 45^{\circ}-11.785 \cos 45^{\circ}-5=0 \\
& F_{B C}=11.7 \mathrm{k}(\mathrm{~T}) \\
& +\uparrow \sum F_{y}=0 ; \quad-F_{G B}+11.785 \sin 45^{\circ}+2.36 \sin 45^{\circ}=0 \\
& F_{G B}=10 \mathrm{k}(\mathrm{C})
\end{aligned}
$$

Joint \boldsymbol{G} :

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{G F}=8.33 \mathrm{k}(\mathrm{C})
$$

$$
V_{\text {Panel }}=11.667 \mathrm{k}
$$

$$
F_{D F}=0
$$

$$
F_{E C}=\frac{11.667}{\sin 45^{\circ}}=16.5 \mathrm{k}(\mathrm{~T})
$$

Joint D:

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{\rightarrow} \sum F_{x}=0 ; \quad F_{C D}=0 \\
& +\uparrow \sum F_{y}=0 ; \quad F_{E D}=21.7 \mathrm{k}(\mathrm{C})
\end{aligned}
$$

Joint \boldsymbol{E} :

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{E F}+5-16.5 \cos 45^{\circ}=0
$$

$$
F_{E F}=6.67 \mathrm{k}(\mathrm{C})
$$

Joint \boldsymbol{F} :

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad F_{F C}-10-2.36 \sin 45^{\circ}=0 \\
F_{F C}=11.7 \mathrm{k}(\mathrm{C})
\end{gathered}
$$

Ans.

Ans.

Ans.

18.33 K
18.33 K

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

7-5. Determine (approximately) the force in each member of the truss. Assume the diagonals can support either a tensile or a compressive force.

Support Reactions. Referring to, Fig. a
$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}-2=0 \quad A_{x}=2 \mathrm{k}$
$\zeta+\sum M_{A}=0 ; \quad D_{y}(24)+2(6)-7(24)-14(16)-14(8)=0 \quad D_{y}=20.5 \mathrm{k}$
$\varsigma+\sum M_{D}=0 ; \quad 14(8)+14(16)+7(24)+2(6)-A_{y}(24)=0 \quad A_{y}=21.5 \mathrm{k}$

Method of Sections. It is required that $F_{B H}=F_{A G}=F_{1}$. Referring to Fig. b,
$+\uparrow \sum F_{y}=0 ; \quad 21.5-7-2 F_{1}\left(\frac{3}{5}\right)=0 \quad F_{1}=12.08 \mathrm{k}$
Therefore,
$F_{B H}=12.1 \mathrm{k}(\mathrm{T}) \quad F_{A G}=12.1 \mathrm{k}(\mathrm{C})$
Ans.
$\varsigma+\sum M_{H}=0 ; \quad F_{A B}(6)+2(6)-12.08\left(\frac{4}{5}\right)(6)=0 \quad F_{A B}=7.667 \mathrm{k}(\mathrm{T})=7.67 \mathrm{k}(\mathrm{T}) \quad$ Ans.
$\zeta+\sum M_{A}=0 ; \quad F_{G H}(6)-12.08\left(\frac{4}{5}\right)(6)=0 \quad F_{G H}=9.667 \mathrm{k}(\mathrm{C})=9.67 \mathrm{k}(\mathrm{C}) \quad$ Ans.
It is required that $F_{C G}=F_{B F}=F_{2}$. Referring to Fig. c,
$+\uparrow \sum F_{y}=0 ; \quad 21.5-7-14-2 F_{2}\left(\frac{3}{5}\right)=0 \quad F_{2}=0.4167 \mathrm{k}$

7-5. Continued

Therefore,
$F_{C G}=0.417 \mathrm{k}(\mathrm{T}) \quad F_{B F}=0.417 \mathrm{k}(\mathrm{C})$
$\zeta+\sum M_{B}=0 ; \quad F_{F G}(6)-0.4167\left(\frac{4}{5}\right)(6)+7(8)-21.5(8)=0$
$F_{F G}=19.67 \mathrm{k}(\mathrm{C})=19.7 \mathrm{k}(\mathrm{C})$
$\zeta+\sum M_{G}=0 ; \quad F_{B C}(6)+7(8)+2(6)-21.5(8)-0.4167\left(\frac{4}{5}\right)(6)=0$
$F_{B C}=17.67 \mathrm{k}(\mathrm{T})=17.7 \mathrm{k}(\mathrm{T})$
It is required that $F_{C E}=F_{D F}=F_{3}$. Referring to Fig. d
$+\uparrow \sum F_{y}=0 ; \quad 20.5-7-2 F_{3}\left(\frac{3}{5}\right)=0 \quad F_{3}=11.25 \mathrm{k}$
Therefore,
$F_{C E}=11.25 \mathrm{k}(\mathrm{T}) \quad F_{D F}=11.25 \mathrm{k}(\mathrm{C})$
$\varsigma+\sum M_{D}=0 ; \quad 2(6)+11.25\left(\frac{4}{5}\right)(6)-F_{E F}(6)=0 \quad F_{E F}=11.0 \mathrm{k}(\mathrm{C})$
$\varsigma+\sum M_{E}=0 ; \quad 11.25(0.8)(6)-F_{C D}(6)=0 \quad F_{C D}=9.00 \mathrm{k}(\mathrm{T})$

Method of Joints.

Joint A: Referring to Fig. e,
$+\uparrow \sum F_{y}=0 ; \quad 21.5-12.08\left(\frac{3}{5}\right)-F_{A H}=0 \quad F_{A H}=14.25 \mathrm{k}(\mathrm{C})$

Joint B: Referring to Fig. f,
$+\uparrow \sum F_{y}=0 ; \quad 12.08\left(\frac{3}{5}\right)-0.4167\left(\frac{3}{5}\right)-F_{B G}=0 \quad F_{B G}=7.00 \mathrm{k}(\mathrm{C})$

Joint $C: \quad$ Referring Fig. g,
$+\uparrow \sum F_{y}=0 ; \quad 11.25\left(\frac{3}{5}\right)+0.4167\left(\frac{3}{5}\right)-F_{C F}=0 \quad F_{C F}=7.00 \mathrm{k}(\mathrm{C})$

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.
(e)

Ans.

(f)

7-5. Continued

Joint D: Referring to Fig. h,
$+\uparrow \sum F_{y}=0 ; \quad 20.5-11.25\left(\frac{3}{5}\right)-F_{D E}=0$
$F_{D E}=13.75 \mathrm{k}$

(g)

Ans.

(h)

7-6. Solve Prob. 7-5 assuming that the diagonals cannot support a compressive force.

Support Reactions. Referring to Fig. a,
$\xrightarrow{+} \sum F_{x}=0 ; \quad A_{x}-2=0 \quad A_{x}=2 \mathrm{k}$
$\varsigma+\sum M_{A}=0 ; \quad D_{y}(24)+2(6)-7(24)-14(16)-14(8)=0 \quad D_{y}=20.5 \mathrm{k}$
$\varsigma+\sum M_{D}=0 ; \quad 14(8)+14(16)+7(24)+2(6)-A_{y}(24)=0 \quad A_{y}=21.5 \mathrm{k}$
Method of Sections. It is required that
$F_{A G}=F_{B F}=F_{D F}=0$
Ans.
Referring to Fig. b,
$+\uparrow \sum F_{y}=0 ; \quad 21.5-7-F_{B H}\left(\frac{3}{5}\right)=0 \quad F_{B H}=24.17 \mathrm{k}(\mathrm{T})=24.2 \mathrm{k}(\mathrm{T})$ Ans.
$\varsigma+\sum M_{A}=0 ; \quad F_{G H}(6)-24.17\left(\frac{4}{5}\right)(6)=0 \quad F_{G H}=19.33 \mathrm{k}(\mathrm{C})=19.3 \mathrm{k}(\mathrm{C})$
Ans.
$\zeta+\sum M_{H}=0 ; 2(6)-F_{A B}(6)=0 \quad F_{A B}=2.00 \mathrm{k}(\mathrm{C})$
Ans.

7-6. Continued

Referring to Fig. c
$+\uparrow \sum F_{y}=0 ; \quad 21.5-7-14-F_{C G}\left(\frac{3}{5}\right)=0 \quad F_{C G}=0.8333 \mathrm{k}(\mathrm{T})=0.833 \mathrm{k}(\mathrm{T}) \quad$ Ans.
$\varsigma+\sum M_{B}=0 ; \quad F_{F G}(6)+7(8)-21.5(8)-0.8333\left(\frac{4}{5}\right)(6)=0$
$F_{F G}=20.0 k(C)$ Ans.
$\varsigma+\sum M_{G}=0 ; \quad F_{B C}(6)+7(8)+2(6)-21.5(8)=0 \quad F_{B C}=17.33 \mathrm{k}(\mathrm{T})=17.3 \mathrm{k}(\mathrm{T})$ Ans.
Referring to Fig. d,
$+\uparrow \sum F_{y}=0 ; \quad 20.5-7-F_{C E}\left(\frac{3}{5}\right)=0 \quad F_{C E}=22.5 \mathrm{k}(\mathrm{T})$
Ans.

Ans.

Ans.
$\zeta+\sum M_{E}=0 ; \quad-F_{C D}(6)=0 \quad F_{C D}=0$

Method of Joints.

Joint A: Referring to Fig. e,
$+\uparrow \sum F_{y}=0 ; \quad 21.5-F_{A H}=0 \quad F_{A H}=21.5 \mathrm{k}(\mathrm{C})$

Ans.

Joint B: Referring to Fig. f,
$+\uparrow \sum F_{y}=0 ; \quad 24.17\left(\frac{3}{5}\right)-F_{B G}=0 \quad F_{B G}=14.5 \mathrm{k}(\mathrm{C})$
Ans.

Joint C: Referring to Fig. g,
$+\uparrow \sum F_{y}=0 ; \quad 0.8333\left(\frac{3}{5}\right)+22.5\left(\frac{3}{5}\right)-F_{C F}=0 \quad F_{C F}=14.0 \mathrm{k}(\mathrm{C})$ Ans.

Joint D: Referring to Fig. h,
$+\uparrow \sum F_{y}=0 ; \quad 20.5-F_{D E}=0 \quad F_{D E}=20.5 \mathrm{k}(\mathrm{C})$

Ans.

$A_{y}=21.5 \mathrm{~K}$

(g)

$D_{y}=20.5 \mathrm{k}$
(h)

7-7. Determine (approximately) the force in each member of the truss. Assume the diagonals can support either a tensile or compressive force.

Assume $F_{B D}=F_{E C}$

$$
\begin{array}{r}
+\uparrow \sum F_{y}=0 ; \quad 2 F_{E C}\left(\frac{1.5}{2.5}\right)-4=0 \\
F_{E C}=3.333 \mathrm{kN}=3.33 \mathrm{kN}(\mathrm{~T}) \\
F_{B D}=3.333 \mathrm{kN}=3.33 \mathrm{kN}(\mathrm{C})
\end{array}
$$

$$
\varsigma+\sum M_{C}=0 ; \quad F_{E D}(1.5)-\left(\frac{2}{2.5}\right)(3.333)(1.5)=0
$$

$$
F_{E D}=2.67 \mathrm{kN}(\mathrm{~T})
$$

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{B C}=2.67 \mathrm{kN}(\mathrm{C})
$$

Joint C :

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad F_{C D}+3.333\left(\frac{1.5}{2.5}\right)-4=0 \\
F_{C D}=2.00 \mathrm{kN}(\mathrm{~T})
\end{gathered}
$$

Assume $F_{F B}=F_{A E}$

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad 2 F_{F B}\left(\frac{1.5}{2.5}\right)-8-4=0 \\
& F_{F B}=10.0 \mathrm{kN}(\mathrm{~T}) \\
& F_{A E}=10.0 \mathrm{kN}(\mathrm{C}) \\
& \varsigma+\sum M_{B}=0 ; \quad F_{F E}(1.5)-10.0\left(\frac{2}{2.5}\right)(1.5)-4(2)=0 \\
& F_{F E}=13.3 \mathrm{kN}(\mathrm{~T})
\end{aligned}
$$

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{A B}=13.3 \mathrm{kN}(\mathrm{C})
$$

Joint B:

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad F_{B E}+10.0\left(\frac{1.5}{2.5}\right)-3.333\left(\frac{1.5}{2.5}\right)-8=0 \\
F_{B E}=4.00 \mathrm{kN}(\mathrm{~T})
\end{gathered}
$$

Joint A:

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad F_{A F}-10.0\left(\frac{1.5}{2.5}\right)=0 \\
F_{A F}=6.00 \mathrm{kN}(\mathrm{~T})
\end{gathered}
$$

Ans.
Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.
*7-8. Solve Prob. 7-7 assuming that the diagonals cannot support a compressive force.

Assume

$$
F_{B D}=0
$$

$$
+\uparrow \sum F_{y}=0 ; \quad F_{E C}\left(\frac{1.5}{2.5}\right)-4=0
$$

$$
F_{E C}=6.667 \mathrm{kN}=6.67 \mathrm{kN}(\mathrm{~T})
$$

$\zeta+\sum M_{C}=0 ; \quad F_{E D}=0$
$\xrightarrow{+} \sum F_{x}=0 ; \quad F_{B C}-6.667\left(\frac{2}{2.5}\right)=0$
$F_{B C}=5.33 \mathrm{kN}(\mathrm{C})$

Joint \boldsymbol{D} :

From Inspection:

	$F_{C D}=0$
Assume	$F_{A E}=0$

$$
+\uparrow \sum F_{y}=0 ; \quad F_{F B}\left(\frac{1.5}{2.5}\right)-8-4=0
$$

$$
F_{F B}=20.0 \mathrm{kN}(\mathrm{~T})
$$

$$
\varsigma+\sum M_{B}=0 ; \quad F_{F E}(1.5)-4(2)=0
$$

$$
F_{F E}=5.333 \mathrm{kN}=5.33 \mathrm{kN}(\mathrm{~T})
$$

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{A B}-5.333-20.0\left(\frac{2}{2.5}\right)=0
$$

$$
F_{A B}=21.3 \mathrm{kN}(\mathrm{C})
$$

Joint B:

$$
\begin{gathered}
+\uparrow \sum F_{y}=0 ; \quad-F_{B E}-8+20.0\left(\frac{1.5}{2.5}\right)=0 \\
F_{B E}=4.00 \mathrm{kN}(\mathrm{~T})
\end{gathered}
$$

Joint \boldsymbol{A} :

$$
+\uparrow \sum F_{y}=0 ; \quad F_{A F}=0
$$

Ans.

Ans.

Ans.

Ans.

Ans.
Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

7-9. Determine (approximately) the force in each member of the truss. Assume the diagonals can support both tensile and compressive forces.

Method of Sections. It is required that $F_{C F}=F_{D G}=F_{1}$. Referring to Fig. a,
$\xrightarrow{+} \sum F_{x}=0 ; 2 F_{1} \sin 45^{\circ}-2-1.5=0 \quad F_{1}=2.475 \mathrm{k}$

Therefore,

$$
\begin{aligned}
& F_{C F}=2.48 \mathrm{k}(\mathrm{~T}) \quad F_{D G}=2.48 \mathrm{k}(\mathrm{C}) \\
& \varsigma+\sum M_{D}=0 ; \quad 1.5(15)+2.475 \cos 45^{\circ}(15)-F_{F G}(15)=0 \\
& F_{F G}=3.25 \mathrm{k}(\mathrm{C}) \\
& C+\sum M_{F}=0 ; \quad 1.5(15)+2.475 \cos 45^{\circ}(15)-F_{C D}(15)=0 \\
& F_{C D}=3.25 \mathrm{k}(\mathrm{~T})
\end{aligned}
$$

Ans.

Ans.

Ans.
It is required that $F_{B G}=F_{A C}=F_{2}$. Referring to Fig. b,
$\xrightarrow{+} \sum F_{x}=0 ; 2 F_{2} \sin 45^{\circ}-2-2-1.5=0 \quad F_{2}=3.889 \mathrm{k}$
Therefore,

$$
\begin{aligned}
& F_{B G}=3.89 \mathrm{k}(\mathrm{~T}) \quad F_{A C}=3.89 \mathrm{k}(\mathrm{C}) \\
& \mathrm{C}+\sum M_{G}=0 ; \quad 1.5(30)+2(15)+3.889 \cos 45^{\circ}(15)-F_{B C}(15)=0 \\
& F_{B C}=7.75 \mathrm{k}(\mathrm{~T}) \\
& \mathrm{C}+\sum M_{C}=0 ; \quad 1.5(30)+2(15)+3.889 \cos 45^{\circ}(15)-F_{A G}(15)=0 \\
& F_{A G}=7.75 \mathrm{k}(\mathrm{C})
\end{aligned}
$$

Ans.

Ans.

(a)

Method of Joints.

Joint \boldsymbol{E} : Referring to Fig. c,

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{E F} \cos 45^{\circ}-1.5=0 \quad F_{E F}=2.121 \mathrm{k}(\mathrm{C})=2.12 \mathrm{k}(\mathrm{C})
$$

$$
+\uparrow \sum F_{y}=0 ; \quad 2.121 \sin 45^{\circ}-F_{D E}=0 \quad F_{D E}=1.50 \mathrm{k}(\mathrm{~T})
$$

Ans.

Ans.

Ans.

7-9. Continued

Joint G : Referring to Fig. e,

$$
\begin{gathered}
\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; 3.889 \sin 45^{\circ}-2.475 \cos 45^{\circ}-F_{C G}=0 \\
F_{C G}=1.00 \mathrm{k}(\mathrm{C})
\end{gathered}
$$

Joint A: Referring to Fig. f,

$$
\begin{gathered}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; \quad F_{A B}-3.889 \cos 45^{\circ}=0 \\
F_{A B}=2.75 \mathrm{k}
\end{gathered}
$$

(e)

Ans.
(c)

(d)

(f)

7-10. Determine (approximately) the force in each member of the truss. Assume the diagonals $D G$ and $A C$ cannot support a compressive force.

Method of Sections. It is required that

$$
F_{D G}=F_{A C}=0
$$

Ans.
Referring to Fig. a,
$\xrightarrow{+} \sum F_{x}=0 ; \quad F_{C F} \sin 45^{\circ}-1.5-2=0 \quad F_{C F}=4.950 \mathrm{k}(\mathrm{T})=4.95 \mathrm{k}(\mathrm{T})$
Ans.
$\varsigma+\sum M_{F}=0 ; \quad 1.5(15)-F_{C D}(15)=0 \quad F_{C D}=1.50 \mathrm{k}(\mathrm{T})$
$\zeta+\sum M_{D}=0 ; \quad 1.5(15)+4.950 \cos 45^{\circ}(15)-F_{F G}(15)=0$

$$
F_{F G}=5.00 \mathrm{k}(\mathrm{C})
$$

Ans.

Referring to Fig. b,

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{B G} \sin 45^{\circ}-2-2-1.5=0 \quad F_{B G}=7.778 \mathrm{k}(\mathrm{~T})=7.78 \mathrm{k}(\mathrm{~T})
$$

$$
\zeta+\sum M_{G}=0 ; \quad 1.5(30)+2(15)-F_{B C}(15)=0 \quad F_{B C}=5.00 \mathrm{k}(\mathrm{~T})
$$

$$
\zeta+\sum M_{C}=0 ; \quad 1.5(30)+2(15)+7.778 \cos 45^{\circ}-F_{A G}(15)=0
$$

$$
F_{A G}=10.5 \mathrm{k}(\mathrm{C})
$$

Method of Joints.

Joint E : Referring to Fig. c,
$\xrightarrow{+} \sum F_{x}=0 ; \quad F_{E F} \cos 45^{\circ}-1.5=0 \quad F_{E F}=2.121 \mathrm{k}(\mathrm{C})=2.12 \mathrm{k}(\mathrm{C})$
$+\uparrow \sum F_{y}=0 ; \quad 2.121 \sin 45^{\circ}-F_{D E}=0 \quad F_{D E}=1.50 \mathrm{k}(\mathrm{T})$
Joint F : Referring to Fig. d,
$\xrightarrow{+} \sum F_{x}=0 ; 4.950 \sin 45^{\circ}-2.121 \cos 45^{\circ}-F_{D F}=0 \quad F_{D F}=2.00 \mathrm{k}(\mathrm{C})$ Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

(a)

Joint G : Referring to Fig.e,

$$
\xrightarrow{+} \sum F_{x}=0 ; 7.778 \sin 45^{\circ}-F_{C G}=0 \quad F_{C G}=5.50 \mathrm{k}(\mathrm{C})
$$

Ans.

Joint \boldsymbol{A} : Referring to Fig. f,
$\xrightarrow{+} \sum F_{x}=0 ; \quad F_{A B}=0$

Ans. exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7-10. Continued

(d)

(e)

7-11. Determine (approximately) the force in each member of the truss. Assume the diagonals can support either a tensile or compressive force.

Method of Sections. It is required that $F_{C E}=F_{D F}=F_{1}$. Referring to Fig. a,

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad 8-2 F_{1}\left(\frac{3}{5}\right)=0 \quad F_{1}=6.667 \mathrm{kN}
$$

Therefore,
$F_{C E}=6.67 \mathrm{kN}(\mathrm{C}) \quad F_{D F}=6.67 \mathrm{kN}(\mathrm{T})$
$\varsigma+\sum M_{E}=0 ; \quad F_{C D}(1.5)-6.667\left(\frac{4}{5}\right)(1.5)=0 \quad F_{C D}=5.333 \mathrm{kN}(\mathrm{C})=5.33 \mathrm{kN}(\mathrm{C})$
$\varsigma+\sum M_{D}=0 ; \quad F_{E F}(1.5)-6.667\left(\frac{4}{5}\right)(1.5)=0 \quad F_{E F}=5.333 \mathrm{kN}(\mathrm{T})=5.33 \mathrm{kN}(\mathrm{T})$

It is required that $F_{B F}=F_{A C}=F_{2}$ Referring to Fig. b,

$$
\xrightarrow{+} \sum F_{x}=0 ; 8+10-2 F_{2}\left(\frac{3}{5}\right)=0 \quad F_{2}=15.0 \mathrm{kN}
$$

Therefore,
$F_{B F}=15.0 \mathrm{kN}(\mathrm{C}) \quad F_{A C}=15.0 \mathrm{kN}(\mathrm{T})$
$\varsigma+\sum M_{F}=0 ; \quad F_{B C}(1.5)-15.0\left(\frac{4}{5}\right)(1.5)-8(2)=0$
$F_{B C}=22.67 \mathrm{kN}(\mathrm{C})=22.7 \mathrm{kN}(\mathrm{C})$
$\varsigma+\sum M_{C}=0 ; \quad F_{A F}(1.5)-15.0\left(\frac{4}{5}\right)(1.5)-8(2)=0$
$F_{A F}=22.67 \mathrm{kN}(\mathrm{T})=22.7 \mathrm{kN}(\mathrm{T})$

Method of Joints.

Joint D: Referring to Fig. c,

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{D E}-6.667\left(\frac{3}{5}\right)=0 \quad F_{D E}=4.00 \mathrm{kN}(\mathrm{C})
$$

Joint C : Referring to Fig. d,

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{C F}+6.667\left(\frac{3}{5}\right)-15.0\left(\frac{3}{5}\right)=0 \quad F_{C F}=5.00 \mathrm{kN}(\mathrm{C})
$$

Joint B: Referring to Fig. e,
$\xrightarrow{+} \sum F_{x}=0 ; \quad 15.0\left(\frac{3}{5}\right)-F_{A B}=9.00 \mathrm{kN}(\mathrm{T})$

Ans.

Ans.

Ans.

Ans.
(a)

Ans.

Ans.

Ans.

Ans.
 Ans.

.

Ans.

7-11. Continued

(b)

*7-12. Determine (approximately) the force in each member of the truss. Assume the diagonals cannot support a compressive force.

Method of Sections. It is required that

$$
F_{C E}=F_{B F}=0
$$

Referring to Fig. a,
$\xrightarrow{+} \sum F_{x}=0 ; 8-F_{D F}\left(\frac{3}{5}\right)=0 \quad F_{D F}=13.33 \mathrm{kN}(\mathrm{T})=13.3 \mathrm{kN}(\mathrm{T})$
$\zeta+\sum M_{E}=0 ; \quad F_{C D}(1.5)-13.33\left(\frac{4}{5}\right)(1.5)=0 \quad F_{C D}=10.67 \mathrm{kN}(\mathrm{C})=10.7 \mathrm{kN}(\mathrm{C})$

$$
\varsigma+\sum M_{D}=0 ; \quad F_{E F}(1.5)=0 \quad F_{E F}=0
$$

Referring to Fig. b,

$$
\begin{gathered}
\stackrel{+}{\rightarrow} \sum F_{x}=0 ; \quad 8+10-F_{A C}\left(\frac{3}{5}\right)=0 \quad F_{A C}=30.0 \mathrm{kN}(\mathrm{~T}) \\
C+\sum M_{C}=0 ; \quad F_{A F}(1.5)-8(2)=0 \quad F_{A F}=10.67 \mathrm{kN}(\mathrm{~T}) \\
C+\sum M_{F}=0 ; \quad F_{B C}(1.5)-30.0\left(\frac{4}{5}\right)(1.5)-8(2)=0 \\
F_{B C}=34.67 \mathrm{kN}(\mathrm{C})=34.7 \mathrm{kN}(\mathrm{C})
\end{gathered}
$$

Method of Joints.

Joint \boldsymbol{E} : Referring to Fig. c,

$$
\xrightarrow{+} \sum F_{x}=0 ; 8-F_{D E}=0 \quad F_{D E}=8.00 \mathrm{kN}(\mathrm{C})
$$

Joint \boldsymbol{C} : Referring to Fig. d,

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad F_{C F}-30.0\left(\frac{3}{5}\right)=0 \quad F_{C F}=18.0 \mathrm{kN}(\mathrm{C})
$$

Joint B: Referring to Fig. e,
$\xrightarrow{+} \sum F_{x}=0 ; \quad F_{A B}=0$
Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

(a)
© 2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7-12. Continued

7-13. Determine (approximately) the internal moments at joints A and B of the frame.

The frame can be simplified to that shown in Fig. a, referring to Fig. b,

$\zeta+\sum M_{A}=0 ; \quad M_{A}-7.2(0.6)-3(0.6)(0.3)=0 \quad M_{A}=4.86 \mathrm{kN} \cdot \mathrm{m}$
Ans.

Referring to Fig. c,
$\zeta+\sum M_{B}=0 ; \quad M_{B}-9.6(0.8)-3(1.4)(0.1)+7.2(0.6)=0$
$M_{B}=3.78 \mathrm{kN} \cdot \mathrm{m} \quad$ Ans.

(a)

7-14. Determine (approximately) the internal moments at joints F and D of the frame.
$\zeta+\sum M_{F}=0 ; \quad M_{F}-0.6(0.75)-2.4(1.5)=0$
$M_{F}=4.05 \mathrm{k} \cdot \mathrm{ft}$
$\varsigma+\sum M_{D}=0 ; \quad-M_{D}+0.8(1)+3.2(2)=0$
$M_{D}=7.20 \mathrm{k} \cdot \mathrm{ft}$

Ans.

Ans.

7-15. Determine (approximately) the internal moment at A caused by the vertical loading.

The frame can be simplified to that shown in Fig. a, Referring to Fig. b,

$$
\begin{array}{cc}
C+\sum M_{A}=0 ; & M_{A}-5(0.8)(0.4)-16(0.8)-9(0.8)(0.4)-28.8(0.8)=0 \\
M_{A}=40.32 \mathrm{kN} \cdot \mathrm{~m}=40.3 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

*7-16. Determine (approximately) the internal moments at A and B caused by the vertical loading.

The frame can be simplified to that shown in Fig. a. The reactions of the $3 \mathrm{kN} / \mathrm{m}$ and $5 \mathrm{kN} / \mathrm{m}$ uniform distributed loads are shown in Fig. b and c respectively. Referring to Fig. d,

$$
\begin{gathered}
C+\sum M_{A}=0 ; M_{A}-3(0.8)(0.4)-9.6(0.8)-5(0.8)(0.4)-16(0.8)=0 \\
M_{A}=23.04 \mathrm{kN} \cdot \mathrm{~m}=23.0 \mathrm{kN} \cdot \mathrm{~m}
\end{gathered}
$$

Referring to Fig.e,
$\varsigma+\sum M_{B}=0 ; 9.60(0.8)-9.60(0.8)+5(0.8)(0.4)+16(0.8)-M_{B}=0$

$$
M_{B}=14.4 \mathrm{kN} \cdot \mathrm{~m}
$$

7-17. Determine (approximately) the internal moments at joints I and L. Also, what is the internal moment at joint H caused by member $H G$?

Joint I:

$$
\begin{aligned}
\varsigma+\sum M_{I}=0 ; & M_{I}-1.0(1)-4.0(2)=0 \\
& M_{I}=9.00 \mathrm{k} \cdot \mathrm{ft}
\end{aligned}
$$

Joint L:

$$
\begin{array}{ll}
\varsigma+\sum M_{L}=0 ; & M_{L}-6.0(3)-1.5(1.5)=0 \\
& M_{L}=20.25 \mathrm{k} \cdot \mathrm{ft}
\end{array}
$$

Joint H:

$$
\begin{array}{cl}
\varsigma+\sum M_{H}=0 ; & M_{H}-3.0(1)-12.0(2)=0 \\
& M_{H}=27.0 \mathrm{k} \cdot \mathrm{ft}
\end{array}
$$

Ans.

Ans.

7-18. Determine (approximately) the support actions at A, B, and C of the frame.

$A_{x}=0$
$B_{x}=0$
$C_{x}=0$
$A_{y}=12 \mathrm{k}$
$B_{y}=16 \mathrm{k}$
$C_{y}=4 \mathrm{k}$
$M_{A}=16.2 \mathrm{k} \cdot \mathrm{ft}$
$M_{B}=9 \mathrm{k} \cdot \mathrm{ft}$
$M_{C}=7.2 \mathrm{k} \cdot \mathrm{ft}$

Ans.
Ans.
Ans.

$A_{\mathrm{y}}=12 \mathrm{k}$

7-19. Determine (approximately) the support reactions at A and B of the portal frame. Assume the supports are (a) pinned, and (b) fixed.

For printed base, referring to Fig. a and b,
$\zeta+\sum M_{A}=0 ; \quad E_{x}(6)+E_{y}(2)-12(6)=0$
$\zeta+\sum M_{B}=0 ; \quad E_{y}(6)-E_{x}(6)=0$
Solving Eqs. (1) and (2) yield
$E_{y}=18.0 \mathrm{kN}$

$$
E_{x}=6.00 \mathrm{kN}
$$

Referring to Fig. a,
$\begin{array}{lll}+\sum F_{x}=0 ; & 12-6.00-A_{x}=0 & A_{x}=6.00 \mathrm{kN} \\ +\uparrow \sum F_{y}=0 ; & 18.0-A_{y}=0 & A_{y}=18.0 \mathrm{kN}\end{array}$
Referring to Fig. b,
$\xrightarrow{+} \sum F_{x}=0 ;$
$6.00-B_{x}=0$
$B_{x}=6.00 \mathrm{kN}$
$+\uparrow \sum F_{y}=0 ;$
$B_{y}-18.0=0$
$B_{y}=18.0 \mathrm{kN}$
For the fixed base, referring to Fig. c and d,
$\zeta+\sum M_{E}=0 ; \quad F_{x}(3)+F_{y}(2)-12(3)=0$
$\zeta+\sum M_{G}=0 ; \quad F_{y}(2)-F_{x}(3)=0$
Solving Eqs (1) and (2) yields,
$F_{y}=9.00 \mathrm{kN}$

$$
F_{x}=6.00 \mathrm{kN}
$$

Referring to Fig. c,
$\xrightarrow{+} \sum F_{x}=0 ;$
$12-6.00-E_{x}=0$
$E_{x}=6.00 \mathrm{kN}$
$+\uparrow \sum F_{y}=0 ;$
$9.00-E_{y}=0$
$E_{y}=9.00 \mathrm{kN}$
Referring to Fig. d,
$\xrightarrow{+} \sum F_{x}=0 ;$
$6.00-G_{x}=0$
$G_{x}=6.00 \mathrm{kN}$
$+\uparrow \sum F_{y}=0 ;$
$G_{y}-9.00=0$
$G_{y}=9.00 \mathrm{kN}$

Ans.

Ans.

Ans.

Ans.

(a)

7-19. Continued

Referring to Fig. e,
$\xrightarrow{+} \sum F_{x}=0 ;$
$6.00-A_{x}=0$
$A_{x}=6.00 \mathrm{kN}$
$+\uparrow \sum F_{y}=0 ;$
$9.00-A_{y}=0$
$A_{y}=9.00 \mathrm{kN}$
$\zeta+\sum M_{A}=0 ;$
$M_{A}-6.00(3)=0$
$M_{A}=18.0 \mathrm{kN} \cdot \mathrm{m}$
Referring to Fig. f,
$\begin{array}{llll}\xrightarrow[\rightarrow]{+} \sum F_{x}=0 ; & 6.00-B_{x}=0 & B_{x}=6.00 \mathrm{kN} & \text { Ans. } \\ +\uparrow \sum F_{y}=0 ; & B_{y}-9.00=0 & B_{y}=9.00 \mathrm{kN} & \text { Ans. } \\ C+\sum M_{B}=0 ; & M_{B}-6.00(3)=0 & M_{B}=18.0 \mathrm{kN} \cdot \mathrm{m} & \text { Ans. }\end{array}$

Ans.

Ans.

Ans.

*7-20. Determine (approximately) the internal moment and shear at the ends of each member of the portal frame. Assume the supports at A and D are partially fixed, such that an inflection point is located at $h / 3$ from the bottom of each column.
$C+\sum M_{B}=0 ; \quad G_{y}(b)-P\left(\frac{2 h}{3}\right)=0$
$G_{y}=P\left(\frac{2 h}{3 b}\right)$
$+\uparrow \sum F_{y}=0 ; \quad E_{y}=\frac{2 P h}{3 b}=0$

$$
E_{y}=\frac{2 P h}{3 b}
$$

$M_{A}=M_{D}=\frac{P}{2}\left(\frac{h}{3}\right)=\frac{P h}{6}$
$M_{B}=M_{C}=\frac{P}{2}\left(\frac{2 h}{3}\right)=\frac{P h}{3}$
Member $B C$:
$V_{B}=V_{C}=\frac{2 P h}{3 b}$
Members $A B$ and $C D$:
$V_{A}=V_{B}=V_{C}=V_{D}=\frac{P}{2}$

Ans.

Ans.

Ans.

Ans.

7-21. Draw (approximately) the moment diagram for member $A C E$ of the portal constructed with a rigid member $E G$ and knee braces $C F$ and $D H$. Assume that all points of connection are pins. Also determine the force in the knee brace $C F$.

Inflection points are at A and B.
From FBD (1):
$\varsigma+\sum M_{B}=0 ; \quad A_{y}(10)-500(7.5)=0 ; \quad A_{y}=375 \mathrm{lb}$
From FBD (2):

$\zeta+\sum M_{E}=0 ; \quad 250(7.5)-F_{C F}\left(\sin 45^{\circ}\right)(1.5)=0 ; \quad F_{C F}=1.77 \mathrm{k}(\mathrm{T})$
$\xrightarrow{+} \sum F_{x}=0 ; \quad-250+1767.8\left(\sin 45^{\circ}\right)+500-E_{x}=0$

$$
E_{x}=1500 \mathrm{lb}
$$

Ans.

(1)
*7-22. Solve Prob. 7-21 if the supports at A and B are fixed instead of pinned.

Inflection points are as mid-points of columns

$$
\begin{array}{lll}
\varsigma+\sum M_{I}=0 ; & J_{y}(10)-500(3.5)=0 ; & J_{y}=175 \mathrm{lb} \\
+\uparrow \sum F_{y}=0 ; & -I_{y}+175=0 ; & I_{y}=175 \mathrm{lb} \\
\varsigma+\sum M_{E}=0 ; & 250(4.5)-F_{C E}\left(\sin 45^{\circ}\right)(1.5)=0 ; & F_{C E}=1.06 \mathrm{k}(\mathrm{~T}) \\
\xrightarrow{+} \sum F_{x}=0 ; & 500+1060.66\left(\sin 45^{\circ}\right)-250-E_{x}=0 ; \\
& E_{x}=1.00 \mathrm{k} &
\end{array}
$$

7-23. Determine (approximately) the force in each truss member of the portal frame. Also find the reactions at the fixed column supports A and B. Assume all members of the truss to be pin connected at their ends.

Assume that the horizontal reactive force component at fixed supports A and B are equal. Thus
$A_{x}=B_{x}=\frac{2+1}{2}=1.50 \mathrm{k}$
Ans.

Also, the points of inflection H and I are at 6 ft above A and B respectively. Referring to Fig. a,
$\varsigma+\sum M_{I}=0 ; \quad H_{y}(16)-1(6)-2(12)=0 \quad H_{y}=1.875 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad I_{y}-1.875=0 \quad I_{y}=1.875 \mathrm{k}$

Referring to Fig. b,

$\xrightarrow{+} \sum F_{x}=0 ; \quad H_{x}-1.50=0 \quad H_{x}=1.50 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad 1.875-A_{y}=0 \quad A_{y}=1.875 \mathrm{k}$
Ans.
$\varsigma+\sum M_{A}=0 ; \quad M_{A}-1.50(6)=0 \quad M_{A}=9.00 \mathrm{k} \cdot \mathrm{ft}$
Ans.
Referring to Fig. c,
$\xrightarrow{+} \sum F_{x}=0 ; \quad 1.50-B_{x}=0 \quad B_{x}=1.50 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad B_{y}-1.875=0 \quad B_{y}=1.875 \mathrm{k}$
Ans.
$\varsigma+\sum M_{B}=0 ; \quad M_{B}-1.50(6)=0 \quad M_{B}=9.00 \mathrm{k} \cdot \mathrm{ft}$
Ans.
Using the method of sections, Fig. d,
$+\uparrow \sum F_{y}=0 ; \quad F_{D G}\left(\frac{3}{5}\right)-1.875=0 \quad F_{D G}=3.125 \mathrm{k}(\mathrm{C}) \quad$ Ans.
$\varsigma+\sum M_{G}=0 ; \quad F_{C D}(6)+1(6)-1.50(12)=0 \quad F_{C D}=2.00 \mathrm{k}(\mathrm{C})$
Ans.
$\varsigma+\sum M_{D}=0 ; \quad F_{F G}(6)-2(6)+1.5(6)+1.875(8)=0 \quad F_{F G}=1.00 \mathrm{k}(\mathrm{C})$

Ans.

Using the method of Joints, Fig.e,

$$
\begin{array}{lll}
+\uparrow \sum F_{y}=0 ; & F_{D F}\left(\frac{3}{5}\right)-3.125\left(\frac{3}{5}\right)=0 & F_{D F}=3.125 \mathrm{k}(\mathrm{~T}) \\
\xrightarrow{+} \sum F_{x}=0 ; & 3.125\left(\frac{4}{5}\right)+3.125\left(\frac{4}{5}\right)-2.00-F_{D E}=0 & F_{D E}=3.00 \mathrm{k}(\mathrm{C})
\end{array}
$$

Ans.

Ans.

7-23. Continued

(b)

$H_{y}=1.875 \mathrm{~K}$

(e)
*7-24. Solve Prob. 7-23 if the supports at A and B are pinned instead of fixed.

Assume that the horizontal reactive force component at pinal supports A and B are equal. Thus,
$A_{x}=B_{x}=\frac{H 2}{2}=1.50 \mathrm{k}$
Referring to Fig. a,
$\zeta+\sum M_{B}=0 ; \quad A_{y}(16)-1(12)-2(18)=0 \quad A_{y}=3.00 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad B_{y}-3.00=0 \quad B_{y}=3.00 \mathrm{k}$

Ans.

Ans.

Ans.

7-24. Continued

Using the method of sections and referring to Fig. b,
$+\uparrow \sum F_{y}=0 ; \quad F_{D G}\left(\frac{3}{5}\right)-3.00=0 \quad \quad F_{D G}=5.00 \mathrm{k}(\mathrm{C}) \quad$ Ans.
$\varsigma+\sum M_{D}=0 ; F_{G F}(6)-2(6)-1.5(12)+3(8)=0 \quad F_{G F}=1.00 \mathrm{k}(\mathrm{C}) \quad$ Ans.
$\varsigma+\sum M_{G}=0 ; F_{C D}(6)+1(6)-1.50(18)=0 \quad F_{C D}=3.50 \mathrm{k}(\mathrm{T}) \quad$ Ans.
Using the method of joints, Fig. c,

$$
\begin{array}{llll}
+\uparrow \sum F_{y}=0 ; & F_{D F}\left(\frac{3}{5}\right)-5.00\left(\frac{3}{5}\right)=0 & F_{D F}=5.00 \mathrm{k}(\mathrm{~T}) & \text { Ans. } \\
\xrightarrow{+} \sum F_{x}=0 ; & 5.00\left(\frac{4}{5}\right)+5.00\left(\frac{4}{5}\right)-3.50-F_{D E}=0 & F_{D E}=4.50 \mathrm{k}(\mathrm{C}) & \text { Ans. }
\end{array}
$$

7-25. Draw (approximately) the moment diagram for column $A G F$ of the portal. Assume all truss members and the columns to be pin connected at their ends. Also determine the force in all the truss members.

Assume that the horizontal force components at pin supports A and B are equal.

Thus,
$A_{x}=B_{x}=\frac{4+8}{2}=6.00 \mathrm{kN}$
Referring to Fig. a,
$\varsigma+\sum M_{A}=0 ; B_{y}(4)-8(5)-4(6.5)=0 \quad B_{y}=16.5 \mathrm{kN}$
$+\uparrow \sum F_{y}=0 ; \quad 16.5-A_{y}=0 \quad A_{y}=16.5 \mathrm{kN}$

Using the method of sections, Fig. b,

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad F_{E G}\left(\frac{3}{5}\right)-16.5=0 \quad F_{E G}=27.5 \mathrm{kN}(\mathrm{~T}) \\
& \varsigma+\sum M_{G}=0 ; \quad F_{E F}(1.5)-4(1.5)-6.00(5)=0 \quad F_{E F}=24.0 \mathrm{kN}(\mathrm{C}) \\
& \varsigma+\sum M_{E}=0 ; \quad 8(1.5)+16.5(2)-6(6.5)-F_{C G}(1.5)=0 \quad F_{C G}=4.00 \mathrm{kN}(\mathrm{C})
\end{aligned}
$$

Ans.

Ans.

Ans.

7-25. Continued

Using the method of joints, Fig. c,
$+\uparrow \sum F_{y}=0 ; \quad F_{C E}\left(\frac{3}{5}\right)-27.5\left(\frac{3}{5}\right)=0 \quad F_{C E}=27.5 \mathrm{kN}(\mathrm{C})$
Ans.
$\xrightarrow{+} \sum F_{x}=0 ; \quad 24-27.5\left(\frac{4}{5}\right)-27.5\left(\frac{4}{5}\right)+F_{D E}=0 \quad F_{D E}=20.0 \mathrm{kN}(\mathrm{T})$
Ans.

7-26. Draw (approximately) the moment diagram for column $A G F$ of the portal. Assume all the members of the truss to be pin connected at their ends. The columns are fixed at A and B. Also determine the force in all the truss members.

Assume that the horizontal force components at fixed supports A and B are equal. Thus,
$A_{x}=B_{x}=\frac{4+8}{2}=6.00 \mathrm{kN}$
Also, the points of inflection H and I are 2.5 m above A and B, respectively. Referring to Fig. a,
$\varsigma+\sum M_{I}=0 ; \quad H_{y}(4)-8(2.5)-4(4)=0 \quad H_{y}=9.00 \mathrm{kN}$
$+\uparrow \sum F_{y}=0 ; \quad I_{y}-9.00=0 \quad I_{y}=9.00 \mathrm{kN}$

7-26. Continued

Referring to Fig. b,

$$
\begin{array}{lll}
\xrightarrow{+} \sum F_{x}=0 ; & H_{x}-6.00=0 & H_{x}=6.00 \mathrm{kN} \\
+\uparrow \sum F_{y}=0 ; & 9.00-A_{y}=0 & A_{y}=9.00 \mathrm{kN} \\
\varsigma+\sum M_{A}=0 ; & M_{A}-6.00(2.5)=0 & M_{A}=15.0 \mathrm{kN} \cdot \mathrm{~m}
\end{array}
$$

Using the method of sections, Fig. d,

$$
\begin{array}{lll}
+\uparrow \sum F_{y}=0 ; & F_{E G}\left(\frac{3}{5}\right)-9.00=0 & F_{E G}=15.0 \mathrm{kN}(\mathrm{~T}) \\
\complement+\sum M_{E}=0 ; & 8(1.5)+9.00(2)-6.00(4)-F_{C G}(1.5)=0 \\
& F_{C G}=4.00 \mathrm{kN}(\mathrm{C}) & \text { Ans. } \\
C+\sum M_{G}=0 ; & F_{E F}(1.5)-4(1.5)-6(2.5)=0 \quad F_{E F}=14.0 \mathrm{kN}(\mathrm{C}) \quad \text { Ans. }
\end{array}
$$

7-26. Continued

Using the method of joints, Fig. e,

$$
\begin{array}{ll}
+\uparrow \sum F_{y}=0 ; & F_{C E}\left(\frac{3}{5}\right)-15.0\left(\frac{3}{5}\right)=0 \\
\xrightarrow{+} \sum F_{x}=0 ; & F_{D E}+14.0-15.0\left(\frac{4}{5}\right)-15.0\left(\frac{4}{5}\right)=0
\end{array}
$$

$$
F_{D E}=10.0 \mathrm{kN}(\mathrm{~T})
$$

(f)

7-27. Determine (approximately) the force in each truss member of the portal frame. Also find the reactions at the fixed column supports A and B. Assume all members of the truss to be pin connected at their ends.

Assume that the horizontal force components at fixed supports A and B are equal. Thus,
$A_{x}=B_{x}=\frac{12+8}{2}=10.0 \mathrm{kN}$
Ans.

Also, the points of inflection J and K are 3 m above A and B respectively. Referring to Fig. a,

$$
\begin{aligned}
& \zeta+\sum M_{k}=0 ; \quad J_{y}(6)-8(3)-12(5)=0 \quad J_{y}=14.0 \mathrm{kN} \\
& +\uparrow \sum F_{y}=0 ; \quad K_{y}-14.0=0 \quad K_{y}=14.0 \mathrm{kN}
\end{aligned}
$$

7-27. Continued

Referring to Fig. b,
$\xrightarrow{+} \sum F_{x}=0 ; \quad J_{x}-10.0=0 \quad J_{x}=10.0 \mathrm{kN}$
$+\uparrow \sum F_{y}=0 ; \quad 14.0-A_{y}=0 \quad A_{y}=14.0 \mathrm{kN}$
$\zeta+\sum M_{A}=0 ; \quad M_{A}-10.0(3)=0 \quad M_{A}=30.0 \mathrm{kN} \cdot \mathrm{m}$
Ans.

Ans.

Ans.

Ans.

Ans.

Ans.
Ans.

Ans.

Ans.

Referring Fig. f (Joint E),

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad F_{E I}\left(\frac{4}{5}\right)-17.5\left(\frac{4}{5}\right)=0 \quad F_{E I}=17.5 \mathrm{kN}(\mathrm{C}) \\
& +\sum F_{x}=0 \quad F_{D E}+16.5-17.5\left(\frac{3}{5}\right)-17.5\left(\frac{3}{5}\right)=0 \quad F_{D E}=4.50 \mathrm{kN}(\mathrm{~T})
\end{aligned}
$$

Ans.

Ans.

Referring to Fig. g (Joint I),

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad F_{D I}\left(\frac{4}{5}\right)-17.5\left(\frac{4}{5}\right)=0 \quad F_{D I}=17.5 \mathrm{kN}(\mathrm{~T}) \\
& \xrightarrow{+} \sum F_{x}=0 ; \quad 17.5\left(\frac{3}{5}\right)+17.5\left(\frac{3}{5}\right)+4.00-F_{C I}=0 \quad F_{C I}=25.0 \mathrm{kN}(\mathrm{C})
\end{aligned}
$$

Ans.

Ans.

(f)
(g)
*7-28. Solve Prob. 7-27 if the supports at A and B are pinned instead of fixed.

Ans.

Ans.

Ans.

Ans.
Ans.
$\varsigma+\sum M_{F}=0 ; \quad F_{G H}(2)+8(2)-10.0(8)=0 \quad F_{G H}=32.0 \mathrm{kN}(\mathrm{T})$
Using method of joints, Fig. c (Joint H),
$+\uparrow \sum F_{y}=0 ; \quad F_{E H}\left(\frac{4}{5}\right)-30.0\left(\frac{4}{5}\right)=0 \quad F_{E H}=30.0 \mathrm{kN}(\mathrm{T})$
Ans.
$\xrightarrow{+} \sum F_{x}=0 ; \quad 30.0\left(\frac{3}{5}\right)+30.0\left(\frac{3}{5}\right)-32.0-F_{H I}=0 \quad F_{H I}=4.00 \mathrm{kN}(\mathrm{C})$ Ans.
Referring to Fig. d (Joint E),

$$
\begin{aligned}
& +\uparrow \sum F_{y}=0 ; \quad F_{E I}\left(\frac{4}{5}\right)-30.0\left(\frac{4}{5}\right)=0 \quad F_{E I}=30.0 \mathrm{kN}(\mathrm{C}) \\
& \xrightarrow{+} \sum F_{x}=0 ; \quad F_{D E}+24.0-30.0\left(\frac{3}{5}\right)-30.0\left(\frac{3}{5}\right)=0 \quad F_{D E}=12.0 \mathrm{kN}(\mathrm{~T}) A n s .
\end{aligned}
$$

Referring to Fig.e (Joint I),

$$
\begin{array}{r}
+\uparrow \sum F_{y}=0 ; \quad F_{D I}\left(\frac{4}{5}\right)-30.0\left(\frac{4}{5}\right)=0 \quad F_{D I}=30.0 \mathrm{kN}(\mathrm{~T}) \\
\xrightarrow{+} \sum F_{x}=0 ; \quad 30.0\left(\frac{3}{5}\right)+30.0\left(\frac{3}{5}\right)+4.00-F_{C I}=0 \\
F_{C I}=40.0 \mathrm{kN}(\mathrm{C})
\end{array}
$$

Ans.

Ans.

7-28. Continued

(b)

(C)

(d)

(e)

7-29. Determine (approximately) the force in members $G F, G K$, and $J K$ of the portal frame. Also find the reactions at the fixed column supports A and B. Assume all members of the truss to be connected at their ends.

Assume that the horizontal force components at fixed supports A and B are equal. Thus,

Also, the points of inflection N and O are at 6 ft above A and B respectively. Referring to Fig. a,
$\varsigma+\sum M_{B}=0 ; \quad N_{y}(32)-4(9)=0 \quad N_{y}=1.125 \mathrm{k}$
$\varsigma+\sum M_{N}=0 ; \quad O_{y}(32)-4(9)=0 \quad O_{y}=1.125 \mathrm{k}$
Referring to Fig. b,
$\xrightarrow{+} \sum F_{x}=0 ; \quad N_{x}-2.00=0 \quad N_{x}=2.00 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad 1.125-A_{y}=0 \quad A_{y}=1.125 \mathrm{k}$
Ans.

Ans.

Referring to Fig. c,
$\xrightarrow{+} \sum F_{x}=0 ; \quad B_{x}-2.00=0 \quad B_{x}=2.00 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad B_{y}-1.125=0 \quad B_{y}=1.125 \mathrm{k}$
$\varsigma+\sum M_{B}=0 ; \quad M_{B}-2.00(6)=0 \quad M_{B}=12.0 \mathrm{k} \cdot \mathrm{ft}$
Ans.

Ans.

Using the method of sections, Fig. d,
$+\uparrow \sum F_{y}=0 ; \quad F_{G K}\left(\frac{3}{5}\right)-1.125=0 \quad F_{G K}=1.875 \mathrm{k}(\mathrm{C})$
$\varsigma+\sum M_{K}=0 ; \quad F_{G F}(6)+1.125(16)-2(9)=0 \quad F_{G F}=0$
$\zeta+\sum M_{G}=0 ; \quad-F_{J K}(6)+4(6)+1.125(8)-2.00(15)=0$
$F_{J K}=0.500 \mathrm{k}(\mathrm{C})$

Ans.

7-30. Solve Prob. 7-29 if the supports at A and B are pin connected instead of fixed.

Assume that the horizontal force components at pin supports A and B are equal.
Thus,
$A_{x}=B_{x}=\frac{4}{2}=2.00 \mathrm{k}$
Referring to Fig. a,
$\varsigma+\sum M_{A}=0 ; \quad B_{y}(32)-4(15)=0 \quad B_{y}=1.875 \mathrm{k}$
$+\uparrow \sum F_{y}=0 ; \quad 1.875-A_{y}=0 \quad A_{y}=1.875 \mathrm{k}$

Using the method of sections, Fig. b,
$+\uparrow \sum F_{y}=0 ; \quad F_{G K}\left(\frac{3}{5}\right)-1.875=0 \quad F_{G K}=3.125 \mathrm{k}(\mathrm{C})$
$\varsigma+\sum M_{x}=0 ; \quad F_{G F}(6)+1.875(16)-2.00(15)=0 \quad F_{G F}=0$
Ans.

Ans.
$\zeta+\sum M_{G}=0 ; \quad 4(6)+1.875(8)-2.00(21)+F_{J K}(6)=0 \quad F_{J K}=0.500 \mathrm{k}(\mathrm{T})$
Ans.
Ans.

Ans.

Ans.

7-31. Draw (approximately) the moment diagram for column $A C D$ of the portal. Assume all truss members and the columns to be pin connected at their ends. Also determine the force in members $F G, F H$, and $E H$.

Assume that the horizontal force components at pin supports A and B are equal. Thus,
$A_{x}=B_{x}=\frac{4}{2}=2.00 \mathrm{k}$
Referring to Fig. a,

$\zeta+\sum M_{B}=0 ; \quad A_{y}(32)-4(15)=0 \quad A_{y}=1.875 \mathrm{k}$

Using the method of sections, Fig. b,
$\zeta+\sum M_{H}=0 ; \quad F_{F G}\left(\frac{3}{5}\right)(16)+1.875(16)-2.00(15)=0 \quad F_{F G}=0$
Ans.
$\varsigma+\sum M_{F}=0 ; \quad 4(6)+1.875(8)-2.00(21)+F_{E H}(6)=0$
$F_{E H}=0.500 \mathrm{k}(\mathrm{T})$
$\varsigma+\sum M_{D}=0 ; \quad F_{F H}\left(\frac{3}{5}\right)(16)-2.00(15)=0 \quad F_{F H}=3.125 \mathrm{k}(\mathrm{C})$
Ans.
Ans.

Also, referring to Fig. c,

$$
\begin{gathered}
C+\sum M_{E}=0 ; \quad F_{D F}\left(\frac{3}{5}\right)(8)+1.875(8)-2.00(15)=0 \\
F_{D F}=3.125 \mathrm{k}(\mathrm{C}) \\
C+\sum M_{D}=0 ; \quad F_{C E}\left(\frac{3}{\sqrt{73}}\right)(8)-2.00(15)=0 \\
F_{C E}=10.68 \mathrm{k}(\mathrm{~T}) \\
\xrightarrow{+} \sum F_{x}=0 ; \quad 4+10.68\left(\frac{8}{\sqrt{73}}\right)-3.125\left(\frac{4}{5}\right)-2.00-F_{D E}=0 \\
F_{D E}=9.50 \mathrm{k}(\mathrm{C})
\end{gathered}
$$

(b)

7-31. Continued

*7-32. Solve Prob. 7-31 if the supports at A and B are fixed instead of pinned.

Assume that the horizontal force components at fixed supports A and B are equal. Thus,
$A_{x}=B_{x}=\frac{4}{2}=2.00 \mathrm{k}$
Also, the points of inflection N and O are 6 ft above A and B respectively. Referring to Fig. a,

$\varsigma+\sum M_{O}=0 ; \quad N_{y}(32)-4(9)=0 \quad N_{y}=1.125 \mathrm{k}$
Referring to Fig. b,

$$
\begin{aligned}
& \xrightarrow[\rightarrow]{+} F_{x}=0 ; \quad N_{x}-2.00=0 \quad N_{x}=2.00 \mathrm{k} \\
& \varsigma+\sum M_{A}=0 ; \quad M_{A}-2.00(6)=0 \quad M_{A}=12.0 \mathrm{k} \mathrm{ft} \\
& +\uparrow \sum F_{y}=0 ; \quad 1.125-A_{y}=0 \quad A_{y}=1.125 \mathrm{k}
\end{aligned}
$$

7-32. Continued

Using the method of sections, Fig. d,
$\zeta+\sum M_{H}=0 ; \quad F_{F G}\left(\frac{3}{5}\right)(16)+1.125(16)-2.00(9)=0 \quad F_{F G}=0$
Ans.
$\zeta+\sum M_{F}=0 ; \quad-F_{E H}(6)+4(6)+1.125(8)-2.00(15)=0 \quad F_{E H}=0.500 \mathrm{k}(\mathrm{C}) \quad$ Ans.
$\zeta+\sum M_{D}=0 ; \quad F_{F H}\left(\frac{3}{5}\right)(16)-2.00(9)=0 \quad F_{F H}=1.875 \mathrm{k}(\mathrm{C}) \quad$ Ans
Also, referring to Fig e,
$\varsigma+\sum M_{E}=0 ; \quad F_{D F}\left(\frac{3}{5}\right)(8)+1.125(8)-2.00(9)=0 \quad F_{D F}=1.875 \mathrm{k}(\mathrm{C})$
$\varsigma+\sum M_{D}=0 ; \quad F_{C E}\left(\frac{3}{\sqrt{73}}\right)(8)-2.00(9)=0 \quad F_{C E}=6.408 \mathrm{k}(\mathrm{T})$
$\xrightarrow{+} \sum F_{x}=0 ; 4+6.408\left(\frac{8}{\sqrt{73}}\right)-1.875\left(\frac{4}{5}\right)-2.00-F_{D E}=0 \quad F_{D E}=6.50 \mathrm{k}(\mathrm{C})$

7-32. Continued

7-33. Draw (approximately) the moment diagram for column $A J I$ of the portal. Assume all truss members and the columns to be pin connected at their ends. Also determine the force in members $H G, H L$, and $K L$.

$A_{x}=B_{x}=\frac{2+4}{2}=3.00 \mathrm{kN}$
Referring to Fig. a,
$\zeta+\sum M_{B}=0 ; \quad A_{y}(9)-4(4)-2(5)=0 \quad A_{y}=2.889 \mathrm{kN}$
Using the method of sections, Fig. b,

$$
\begin{array}{cl}
C+\sum M_{L}=0 ; & F_{H G} \cos 6.340^{\circ}(1.167)+F_{H G} \sin 6.340^{\circ}(1.5)+2.889(3)-2(1)-3.00(4)=0 \\
& F_{H G}=4.025 \mathrm{kN}(\mathrm{C})=4.02 \mathrm{kN}(\mathrm{C}) \quad \text { Ans. } \\
C+\sum M_{H}=0 ; & F_{K L}(1.167)+2(0.167)+4(1.167)+2.889(1.5)-3.00(5.167)=0 \\
& F_{K L}=5.286 \mathrm{kN}(\mathrm{~T})=5.29 \mathrm{kN}(\mathrm{~T}) \quad \text { Ans. }
\end{array}
$$

$$
+\uparrow \sum F_{y}=0 ; \quad F_{H L} \cos 52.13^{\circ}-4.025 \sin 6.340^{\circ}-2.889=0
$$

$$
F_{H L}=5.429 \mathrm{kN}(\mathrm{C})=5.43 \mathrm{kN}(\mathrm{C})
$$

Ans.

7-33. Continued

Also, referring to Fig. c,

$$
\begin{gathered}
\varsigma+\sum M_{H}=0 ; \quad F_{J K}(1.167)+2(0.167)+4(1.167)+2.889(1.5)-3.00(5.167)=0 \\
F_{J K}=5.286 \mathrm{kN}(\mathrm{~T}) \\
\varsigma+\sum M_{J}=0 ; \quad F_{I H} \cos 6.340^{\circ}(1)-2(1)-3.00(4)=0 \\
F_{I H}=14.09 \mathrm{kN}(\mathrm{C}) \\
+\uparrow \sum F_{y}=0 ; \quad F_{J H} \sin 37.87^{\circ}-14.09 \sin 6.340^{\circ}-2.889=0
\end{gathered}
$$

$$
F_{J H}=7.239 \mathrm{kN}(\mathrm{~T})
$$

(c)

(d)

7-34. Solve Prob. 7-33 if the supports at A and B are fixed instead of pinned.

Also, the reflection points P and R are located 2 m above A and B respectively. Referring to Fig. a
$\varsigma+\sum M_{R}=0 ; \quad P_{y}(9)-4(2)-2(3)=0 \quad P_{y}=1.556 \mathrm{kN}$
Referring to Fig. b,
$\xrightarrow{+} \sum F_{x}=0 ; \quad P_{x}-3.00=0 \quad P_{x}=3.00 \mathrm{kN}$
$\varsigma+\sum M_{A}=0 ; \quad M_{A}-3.00(2)=0 \quad M_{A}=6.00 \mathrm{kN} \cdot \mathrm{m}$
$+\uparrow \sum F_{y}=0 ; \quad 1.556-A_{y}=0 \quad A_{y}=1.556 \mathrm{kN}$

Using the method of sections, Fig. d,

$$
\begin{array}{cl}
\varsigma+\sum M_{L}=0 ; & F_{H G} \cos 6.340^{\circ}(1.167)+F_{H G} \sin 6.340^{\circ}(1.5)+1.556(3)-3.00(2)-2(1)=0 \\
& F_{H G}=2.515 \mathrm{kN}(\mathrm{C})=2.52 \mathrm{kN}(\mathrm{C}) \quad \text { Ans. } \\
\varsigma+\sum M_{H}=0 ; & F_{K L}(1.167)+2(0.167)+4(1.167)+1.556(1.5)-3.00(3.167)=0 \\
& F_{K L}=1.857 \mathrm{kN}(\mathrm{~T})=1.86 \mathrm{kN}(\mathrm{~T}) \quad \text { Ans. }
\end{array}
$$

$+\uparrow \sum F_{y}=0 ; \quad F_{H L} \cos 52.13^{\circ}-2.515 \sin 6.340^{\circ}-1.556=0$
$F_{H L}=2.986 \mathrm{kN}(\mathrm{C})=2.99 \mathrm{kN}(\mathrm{C})$
Ans.

(b)
(a)

(c)

7-34. Continued

Also referring to Fig. e,

$$
\begin{gathered}
\varsigma+\sum M_{H}=0 ; \quad F_{J K}(1.167)+4(1.167)+2(0.167)+1.556(1.5)-3.00(3.167)=0 \\
F_{J K}=1.857 \mathrm{kN}(\mathrm{~T}) \\
\varsigma+\sum M_{J}=0 ; \quad F_{I H} \cos 6.340^{\circ}(1)-2(1)-3.00(2)=0 \\
F_{I H}=8.049 \mathrm{kN}(\mathrm{C}) \\
+\uparrow \sum F_{y}=0 ; \quad F_{J H} \sin 37.87^{\circ}-8.049 \sin 6.340^{\circ}-1.556=0 \\
F_{J H}=3.982 \mathrm{kN}(\mathrm{~T})
\end{gathered}
$$

7-35. Use the portal method of analysis and draw the moment diagram for girder $F E D$.

*7-36. Use the portal method of analysis and draw the moment diagram for girder JIHGF.

$$
K_{y}=0.417 k
$$

7-37. Use the portal method and determine (approximately) the reactions at supports A, B, C, and D.
 exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7-37. Continued
 exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7-37. Continued

7.00 kN

7-38. Use the cantilever method and determine (approximately) the reactions at supports A, B, C, and D. All columns have the same cross-sectional area.

7-38. Continued
 exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7-38. Continued

7-39. Use the portal method of analysis and draw the moment diagram for column $A F E$.

Sk
 exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7-39. Continued

*7-40. Solve Prob. 7-39 using the cantilever method of analysis. All the columns have the same cross-sectional area.

7-41. Use the portal method and determine (approximately) the reactions at A.

$3 k$

 exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

7-42. Use the cantilever method and determine (approximately) the reactions at A. All of the columns have the same cross-sectional area.

7-43. Draw (approximately) the moment diagram for girder PQRST and column BGLQ of the building frame. Use the portal method.

Top story

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad 6-8 V=0 ; \quad V=0.75 \mathrm{k}
$$

Second story

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad 6+9-8 V=0 ; \quad V=1.875 \mathrm{k}
$$

Bottom story

$$
\xrightarrow{+} \sum F_{x}=0 ; \quad 6+9+9-8 V=0 ; \quad V=3.0 \mathrm{k}
$$

*7-44. Draw (approximately) the moment diagram for girder PQRST and column BGLQ of the building frame. All columns have the same cross-sectional area. Use the cantilever method.

$$
\begin{aligned}
& \bar{x}=\frac{15+30+50+70}{5}=33 \mathrm{ft} \\
& \mathrm{C}+\sum M_{U}=0 ; \quad-6(5)-\frac{18}{33} F(15)-\frac{3}{33} F(30)+\frac{17}{33} F(50)+\frac{37}{33} F(70)=0 \\
& F=0.3214 \mathrm{k}
\end{aligned}
$$

$$
\zeta+\sum M_{V}=0
$$

$$
-6(15)-9(5)-\frac{18}{33} F(15)-\frac{3}{33} F(30)+\frac{17}{33} F(50)+\frac{37}{33} F(70)=0
$$

$$
F=1.446 \mathrm{k}
$$

$$
\varsigma+\sum M_{W}=0 ;
$$

$$
-6(25)-9(15)-9(5)-\frac{18}{33} F(15)-\frac{3}{33} F(30)+\frac{17}{33} F(50)+\frac{37}{33} F(70)=0
$$

$$
F=3.536 \mathrm{k}
$$

7-45. Draw the moment diagram for girder $I J K L$ of the building frame. Use the portal method of analysis.

*7-46. Solve Prob. 7-45 using the cantilever method of analysis. Each column has the cross-sectional area indicated.

The centroid of column area is in center of framework.
The centroid of col
Since $\sigma=\frac{F}{A}$, then
$\sigma_{1}=\left(\frac{6.5}{2.5}\right) \sigma_{2} ; \quad \frac{F_{1}}{12}=\frac{6.5}{2.5}\left(\frac{F_{2}}{8}\right) ; \quad F_{1}=3.90 F_{2}$

Area $24\left(10^{-3}\right) \mathrm{m}^{2} \quad 16\left(10^{-3}\right) \mathrm{m}^{2} \quad 16\left(10^{-3}\right) \mathrm{m}^{2} \quad 24\left(10^{-3}\right) \mathrm{m}^{2}$
$\sigma_{4}=\sigma_{1} ; \quad F_{4}=F_{1}$
$\sigma_{2}=\sigma_{3} ;$
$F_{2}=F_{3}$
$\zeta+\sum M_{M}=0 ; \quad-2(10)-4\left(F_{2}\right)+9\left(F_{2}\right)+13\left(3.90 F_{2}\right)=0$

$$
\begin{aligned}
& F_{2}=0.359 \mathrm{k} \\
& F_{1}=1.400 \mathrm{k}
\end{aligned}
$$

The equilibrium of each segment is shown on the FBDs.

